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1. Introduction

W production, through its leptonic decays, features one of the cleanest signatures at

hadronic colliders, with a high-pT charged lepton recoiling against missing energy [1]–

[4]. This distinctive signature and the large production rates allow the measurements of

the W mass (mW ) performed at the Tevatron [5]–[7] to be competitive with LEP2 results;

a further improvement is expected at the LHC. Accurate measurements of the total W

width (ΓW ) will also be obtained. The experimental techniques necessary to perform these

measurements are well known [8, 9], and tested extensively at the Tevatron Run I: ΓW has

been extracted with “indirect” methods [10, 11] (in which the measured quantity is the

ratio of the Z over the W cross section), and with “direct” methods [12, 13] (in which the

measured quantity is the distribution of the W transverse mass). In both cases, a firm

control is mandatory on the theoretical predictions for the pp̄ → W + X or pp → W + X

production processes; the cross sections for these can be schematically written as follows:

σth(W ) =
∑

ab

Pab ⊗ σ̂ab(W ) . (1.1)

Here, Pab is the product of the parton density functions (PDFs) of the partons a and b

(quarks and gluons) in the colliding protons/antiprotons. The PDFs cannot be computed

in QCD at present, and are extracted from global fit to data (dominated by DIS); on the

other hand the quantity σ̂ab(W ), the cross section of the process ab → W + X, is the-

oretically computable. In fact, the overwhelming majority of the theoretical work on W

production has the scope of improving the accuracy with which σ̂ab(W ) is known. NLO

QCD corrections have been computed a long time ago [14]–[18], in a series of papers which

pioneered the factorization techniques in perturbation theory. Total rates to NNLO ac-

curacy have been presented in ref. [19]–[20]; recently, the NNLO result for the rapidity

of the W has also become available [21], the first differential distribution ever to be com-

puted at this order in αs. The resummation of the leading and next-to-leading logarithms
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of pW
T /mW , relevant to the small-pW

T region where the previously mentioned fixed-order

results are unreliable, has been incorporated in a code available to experiments [22]. EW

corrections to the W cross section have been shown to be non negligible [23]–[25], with

effects up to 5%; fortunately, the dominant contribution there is due to photon emission,

which can be implemented in Monte Carlos with multiple QED radiation [26], or combined

with resummed QCD formulae [27] (which is especially relevant to mW measurements).

The measurements of the W mass or width are performed by solving for mW or ΓW

the following equation

σth(W ) = σexp(W ) , (1.2)

where σexp(W ) is the experimental result for the relevant observable. This can be written

as follows:

σexp(W ) =
1

BR(W → lν)

1
∫

Ldt

Nobs

AW
, (1.3)

where BR(W → lν) is the branching ratio for the leptonic decay of the W considered,
∫

Ldt is the integrated hadron luminosity, Nobs is the number of detected signal events,

and AW is the acceptance, namely the fraction of events which pass the selection cuts

of the experimental analysis1. A procedure alternative to that of measuring the W mass

or width is that of using the world averages for mW and ΓW , and to solve eq. (1.2) for
∫

Ldt; in this way, W production is treated as a (hadron) luminosity monitor. The use of

hard processes as luminosity monitors is a very interesting possibility in the high-energy

regime of the LHC, as opposed to the more traditional determination of the luminosity

through the knowledge of the total hadronic cross section; a necessary condition for this to

happen is that the hard cross section must be reliably computed with small uncertainty.

The procedure can be pushed a step further, and eq. (1.2) can be solved for Pab

∫

Ldt, or

for Pab; thus, W production is used in the former case as a parton luminosity monitor, and

in the latter case to determine the PDFs. In both cases, the difficulty lies in the sum over

the parton labels appearing in eq. (1.1): one needs to devise a way to force the particular

combination of partons he is interested in to be the dominant one in that sum. This always

implies the necessity of considering differential W distributions. A well known example is

the determination of the ratio of the d and u parton densities, which is accessible through

the rapidity distribution of the W . More details on the use of W production as a luminosity

monitor or in the context of PDF determination can be found in refs. [28, 29, 30].

Equation (1.2) only involves W cross sections. However, the W ’s are not detected as

such by experiments, but only through charged leptons and missing energy; furthermore,

this detection necessarily takes place only in a part of the final-state phase space, either

because of limited detector acceptance, or to avoid regions where the backgrounds are so

large that the determination of the signal is totally unreliable. Thus, the quantity Nobs that

appears in eq. (1.3) is obtained after applying detector- and analysis-dependent (lepton)

cuts on a very complex final state. The rescaling of Nobs by 1/AW allows one to relate this

quantity to the relevant W cross section; in other words, acceptance corrections provide an

1We neglect for simplicity the discussion of the experimental efficiency with which events within the

acceptance can be detected.
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estimate of the number of undetected events. The acceptances need therefore be computed

with a program that is able to reliably describe in full details the final state emerging from

W production, which typically means an event generator. The following issues then arise:

how accurately can these acceptance corrections be calculated? Does the accuracy of the

acceptance calculation match the intrinsic accuracy of the theoretical prediction for the W

cross section? Generally speaking, the answer to the latter question is negative: the very

high accuracy of the theoretical computations of the W cross section is due to the fact that

these computations are fully inclusive, which is not the case for the codes used to obtain

the acceptances. However, if acceptance cuts only involve the leptons coming from the W

decay, then one may use one of the fixed-order computations [14]–[21], letting the W decay

isotropically in its rest frame to get the final-state leptons. This procedure may lead to

large errors: although the W distributions are correctly predicted by these computations,

the lepton distributions are not, since the spin correlations are neglected between the

leptons and the initial-state partons. NLO results are available [31] that include such spin

correlations, but analogous NNLO results are beyond current capabilities. It should be

stressed that the computations that include EW corrections [24, 25] do include lepton spin

correlations.

The aim of this paper is that of assessing the accuracy to which acceptances for W

signals can be estimated at the Tevatron and the LHC. We shall limit ourselves to con-

sidering the QCD effects that may change the computation of the acceptances as obtained

with standard parton shower Monte Carlos.

The paper is organized as follows: in sect. 2 we introduce our conventions and nota-

tions; sects. 3 and 4 present the results for acceptances and distributions, and in sect. 5 we

give our conclusions.

2. Preliminaries

We focus on W production at the Tevatron pp̄ collider (
√

S = 1.96 TeV) and at the LHC

(pp,
√

S = 14 TeV), and assume in all cases leptonic decays of the W (for the sake of

definiteness, we shall consider W → eν; lepton mass effects will be neglected throughout

this paper). In each case, we shall discuss two possible sets of experimental cuts, selected

to reflect realistic detector capabilities, and to better illustrate how different physics effects

have different impacts on the acceptances depending on the event definition.

For the Tevatron, we define the following cuts:

• Cut 1 : pe
T > 20 GeV , |ηe| < 1 , /ET > 20 GeV ; (2.1)

• Cut 2 : pe
T > 20 GeV , 1 < |ηe| < 2.5 , /ET > 20 GeV . (2.2)

In both cases, we identify /ET with the transverse momentum of the neutrino; pe
T and

ηe are the transverse momentum and the rapidity of the electron. The different rapidity

ranges for the two cases mimic typical selection cuts used by the Tevatron experiments,

and provide a useful separation between regions of the W rapidity spectrum which have

different sensitivities to some of the sources of uncertainty, such as the PDFs. At the LHC
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we define instead:

• Cut 1 : pe
T > 20 GeV , |ηe| < 2.5 , /ET > 20 GeV ; (2.3)

• Cut 2 : pe
T > 40 GeV , |ηe| < 2.5 , /ET > 20 GeV . (2.4)

In this case the selection with higher pe
T threshold is mostly intended to provide an example

of a cut which is very sensitive to the accuracy of the theoretical computation. In addition,

large values of pe
T will be used in the LHC triggers, to cope with the huge inclusive-electron

signal and background rates.

We now define our theoretical calculations in more detail:

• LO: parton-level LO QCD;

• LO+HERWIG: parton-level LO QCD, evolved through the HERWIG shower [32]. No

matrix-element corrections to the parton shower [33]–[35] have been included, to

preserve the LO nature of this step;

• NLO: parton-level NLO QCD;

• MC@NLO: parton-level NLO QCD, merged with the HERWIG parton shower as

discussed in refs. [36, 37]. Version 2.31 of MC@NLO is used.

The LO parton-level computations have been performed with ALPGEN [38]. The NLO

matrix elements of ref. [31] have been implemented in a fully-differential code according to

the formalism of refs. [39, 40]; by turning off the O(αs) corrections, complete agreement has

been found with the results obtained with ALPGEN for all the W and lepton observables

considered. All of the cases above include the spin correlations between the decay leptons

and the partons entering the hard matrix elements. For our comparisons, we shall also

consider the case in which spin correlations are turned off, an option implemented by

simply letting the W boson decay with a pure phase-space distribution. All W -width

effects are included, and we generate events for which the dilepton pair has a mass within

the range mW − 30ΓW < meν < mW + 30ΓW . The production rate outside this range is

below 10−3 of the total.

Our input parameters are defined by tree-level electroweak gauge invariance [38] with

fixed input values for mW , mZ and GF :

mW = 80.419 GeV , ΓW = 2.048 GeV , sin2 θW = 0.222 . (2.5)

As a default PDF set for all the calculations we use the NLO set MRST2001 [41], with

αs(MZ) =0.119. The default scale choice is µR = µF = µ0 ≡
√

m2
W + pW

T
2
.

3. Results: shower effects at LO and NLO

In this section we compute acceptances and total and differential cross sections, comparing

the results of the four theoretical approaches defined in the previous section. We shall

emphasize in particular the role of NLO corrections, and that of the shower acting on
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Figure 1: Acceptances as a function of the minimum electron transverse momentum,

for the two sets of cuts considered at the Tevatron.

top of the LO and NLO parton-level matrix elements. The effects of neglecting the spin

correlations for the W decay products will also be considered here.

We start with the lepton transverse momentum spectra, shown in fig. 1 and 2 for the

Tevatron and the LHC, respectively. The spectra are plotted in the form of acceptances

as a function of the minimum electron transverse momentum (pe
T (min)), in events which

satisfy the ηe and /ET cuts:

AW (pe
T (min)) =

1

σ(tot)

∫

√

S/2

pe
T (min)

dpe
T

dσ

dpe
T

(cuts) , (3.1)

where σ(tot) is the total W production cross section, evaluated case by case in the appro-

priate scheme (LO or NLO). Since at the LHC both cut 1 and cut 2 require the same

constraints on ηe and /ET , there is only one plot in this case. The four curves in each plot

correspond to the four theoretical computations introduced before.

There are clear differences among the four calculations in the high-pe
T region. The large

difference between the LO and the other results is due to the fact that the LO is the only

case in which pW
T = 0, which implies that pe

T ≤ mW /2; thus, at the LO the high-pe
T region

is only populated by those events contributing to the tail of the W mass spectrum. The

addition of the parton shower improves the situation, since the W acquires a transverse

momentum by recoiling against the partons emitted by the shower. However, it is well

known that the pW
T distribution which originates in this way is considerably softer than

that predicted at the NLO, since the shower lacks the hard O(αs) effects included in the

NLO matrix elements. This fact is reflected in the large differences at pe
T ∼ mW between

the LO+HERWIG and the NLO/MC@NLO predictions. Notice finally that while the NLO

and MC@NLO results match quite well in the regions pe
T

<∼ mW /2 and pe
T

>∼ mW , the

MC@NLO acceptance is larger than the NLO one when mW /2 <∼ pe
T

<∼ mW . While the

high-pT region is not relevant to the determination of the total cross section (since trigger
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Figure 2: Acceptances as a function of the minimum electron transverse momentum,

at the LHC.

thresholds are typically below the mW /2 value), it may play a role in the determination of

the W width, which is extracted from the shape of the high-transverse-mass spectrum of

the ℓν pair [12, 13].

The differences between the various approaches are much smaller in the small-pe
T re-

gion. In fig. 3 we plot the acceptance defined as follows:

AW (ηe(max)) =
1

σ(tot)

∫ ηe(max)

0
d|ηe| dσ

d|ηe|(cuts) , (3.2)

as a function of the maximum electron rapidity (ηe(max)), in events which satisfy the

pe
T > 20 GeV and the /ET cuts; Tevatron (left panel) and LHC (right panel) results are

presented. As can be inferred from fig. 3, the relative behaviour of the various results at

small pe
T ’s shown in figs. 1 and 2 would not change had we integrated over different ranges

in the electron rapidity. This implies that for measurements dominated by small pe
T ’s

the uncertainties on the acceptance corrections are basically independent of the electron

rapidity range chosen.

In order to allow a closer comparison between the various theoretical approaches, we
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Figure 3: Acceptances as a function of the maximum electron rapidity, at the

Tevatron (left panel) and the LHC (right panel), for the smaller pe

T
cut.

present the results2 for the rates in tables 1 and 2, and for the acceptances in tables 3 and 4,

for the Tevatron and the LHC. In the case of the two sets of cuts considered at the Tevatron,

eqs. (2.1) and (2.2), the LO+HERWIG, NLO, and MC@NLO predictions are very close to

each other, whereas the LO results differ by more than 5%. It is particularly remarkable

that the addition of the shower has a sizable effect on the LO result, while the NLO result

remains essentially the same. From the left panel of fig. 3, we see that the LO+HERWIG

and the MC@NLO predictions would be even closer to each other, had we considered a

larger ηe range than that of cut 1. It is worth noting that, by adding the shower to the

LO matrix elements, there are two effects; the first one has already been mentioned, and

consists in giving a non-zero pT to the W . The second effect is due to the fact that, by the

backward showering of the partons which enter the LO matrix elements, one may end up

with one or two gluons emerging from the colliding hadrons (whereas at the LO only the qq̄

combination is possible). This fits nicely into the picture of perturbative QCD corrections;

in fact, at the NLO both the qq̄ and the qg + q̄g partonic initial states contribute to the

results. At the Tevatron the former effect is by far the dominant one, as can be verified

by computing the acceptances for cut 1 and 2 at the NLO and considering only the qq̄

contributions3, which turn out to be very close to the full NLO results. On the other

hand, in the case of cut 1 at the LHC, the qq̄ contribution to the NLO acceptance is about

4% larger than the full NLO result. Thus, both effects play a role in the nice agreement

between the LO+HERWIG and the MC@NLO results for cut 1 at the LHC, shown in

table 4. As already observed in figs. 1 and 2, this situation changes when the pe
T threshold

is increased – see the results relevant to cut 2 in table 4: the MC@NLO prediction is 9%

(3%) larger than that of LO+HERWIG (NLO). Here, the difference between MC@NLO and

LO+HERWIG is essentially due to the lack of hard emissions in the latter – 40 GeV is large

2The relative errors on our results for total rates are 6 · 10−4 or smaller, and beyond the last digit

reported for acceptances.
3Such contributions are scale and scheme dependent; however, this can be neglected for the sake of the

present qualitative argument.
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LO LO+HW NLO MC@NLO

TeV Total 2220 2220 2679 2679

TeV cut 1 907 856 1031 1027

TeV cut 2 790 738 911 900

Table 1: Predictions for the W production rates (in pb) at the Tevatron, with and

without the selection cuts defined in eqs. (2.1) and (2.2).

LO LO+HW NLO MC@NLO

LHC Total 18270 18300 20900 20900

LHC cut 1 9580 8861 9970 10125

LHC cut 2 1060 2230 2699 2776

Table 2: Predictions for the W production rates (in pb) at the LHC, with and

without the selection cuts defined in eqs. (2.3) and (2.4).

enough for the collinear approximation built into the shower to start failing. The difference

between MC@NLO and NLO has a different origin: in the parton-level LO computation at

a fixed mW , pe
T cannot assume values larger than mW /2; this implies the possible presence

of large logarithmic terms, that arise to all orders beyond the leading one in perturbation

theory, and that can be effectively resummed by the shower in MC@NLO. The impact of

these logs is less important as one moves away from the threshold, as can be seen from

figs. 1 and 2.

The inclusion of NLO matrix elements into a parton shower framework renders the

computation of the acceptances by MC@NLO intrinsically more reliable than that per-

formed with a standard Monte Carlo event generator. However, one may wonder whether

the accuracy thus obtained is sufficient in the context of an NNLO analysis. From the

discussion given above, it seems indeed so. In fact, no qualitatively new kinematic effects

appear at the NNLO with respect to the NLO; as far as the computation of the W accep-

tance is concerned, it is irrelevant whether the W recoils against one or two hard partons

(the same would not be true were we interested in the W+jet system). The pe
T = mW /2

boundary is treated by MC@NLO to all orders, thus including NNLO effects. The partonic

initial states that appear for the first time at the NNLO, such as gg, have a very modest

impact on W distributions [21], and are anyhow included in MC@NLO through backward

showering. Thus, we expect the acceptances computed with MC@NLO to be fairly similar

to those that could be computed if we knew how to merge NNLO matrix elements with

parton showers.

Given the fact that, as shown before for pe
T > 20 GeV, MC@NLO and NLO give similar
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LO LO+HW NLO MC@NLO

TeV cut 1 0.409 0.386 0.385 0.383

TeV cut 2 0.356 0.333 0.340 0.336

Table 3: Acceptances for the various cuts, at the Tevatron.

LO LO+HW NLO MC@NLO

LHC cut 1 0.524 0.484 0.477 0.485

LHC cut 2 0.058 0.122 0.129 0.133

Table 4: Acceptances for the various cuts, at the LHC.

results, one may take a different attitude, and use parton-level NNLO results to compute

the acceptances. If the cuts chosen do not select only the region of small pW
T (which is not

reliably predicted by any fixed-order computation), the result of ref. [21] gives access to the

full W kinematics. Unfortunately, no NNLO computation includes lepton spin correlations.

These correlations are irrelevant if one is interested in the distributions of the W , but are

important if one needs to apply cuts on lepton variables. To document this, we present

in table 5 the acceptance results obtained by switching the spin correlations off (namely

assuming flat, phase-space decays of the W ); we compare the LO, NLO, and MC@NLO

results with the analogous ones obtained with full spin correlations, already reported before.

Apart from the case of cut 1 at the Tevatron, the effects are very large, with shifts of up to

15%. NLO and MC@NLO are in general close to each other, but no clear pattern emerges

when going from LO to NLO; as it should be expected, the LO to NLO ratio depends on

the electron rapidity range considered. We thus conclude that, lacking the full information

on lepton spin correlations, present NNLO results can only give rough estimates of the

acceptances.

We can also consider quantities that are less inclusive than acceptances, such as the

rapidity of the W boson (yW ). It has been shown in ref. [21] that the yW spectrum at NNLO

can be very accurately reproduced by rescaling the NLO distribution with the appropriate

K factor; interestingly, the rescaled LO distribution is not a good approximation of the

full NLO distribution. The arguments given before on MC@NLO imply that, by rescaling

with the K factor the yW distribution predicted by MC@NLO, we should get a good

approximation of the true NNLO+shower prediction. In fig. 4 we show the fully inclusive

yW spectra for the Tevatron and the LHC. We notice that the inclusion of the shower into

both the LO and NLO calculations leads to a slightly more central production, in particular

at the LHC. After imposing lepton selection cuts, this effect is reduced at the Tevatron

(fig. 5), but remains clearly visible at the LHC at the NLO (fig. 6). In analogy to what

done in table 5, we also include the predictions obtained at the LO by switching the spin
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Tevatron LHC

LO NLO MC@NLO LO NLO MC@NLO

Cut 1 0.409 0.385 0.383 0.524 0.477 0.485

Cut 1, no spin 0.413 0.394 0.394 0.553 0.510 0.515

Cut 2 0.356 0.340 0.336 0.058 0.129 0.133

Cut 2, no spin 0.389 0.374 0.370 0.075 0.150 0.157

Table 5: Effect of spin correlations on acceptances for the various cuts, at the

Tevatron and the LHC.

Figure 4: Fully-inclusive W rapidity distribution, at the Tevatron (left panel) and

the LHC (right panel).

correlations off (the curves are those labelled “LO, no spin”), which result in significant

changes in the shapes of the distributions.

4. Results: PDF and scale uncertainties

In this section we study the sensitivity of the acceptances to the uncertainties affecting the

PDF sets and to the choices of renormalization/factorization scales.

To assess the PDF uncertainty we have used the 30 MRST2001E sets [42], using the

prescription for asymmetric errors proposed in ref. [43] (modified tolerance method). As

discussed before, our best estimates of the acceptances are obtained with MC@NLO. Given

the results relevant to cuts 1 and 2, we expect the uncertainties relative to the central value

to be very similar when computed with MC@NLO or with NLO. Thus, we shall restrict

ourselves here to the parton-level NLO computations, which are somewhat faster to perform
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Figure 5: W rapidity distribution at the Tevatron, with lepton cuts.

Figure 6: W rapidity distribution at the LHC, with lepton cuts.

than MC@NLO’s. Using the default MRST2001E tolerance value of T =
√

50 (see below

for further discussions on this point), we obtain the following results for the Tevatron:

σ(NLO) = 2679
+26

−43
pb (4.1)
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µ = µ0/2 µ = µ0 µ = 2µ0

NLO MC@NLO NLO MC@NLO NLO MC@NLO

TeV cut 1 0.382 0.384 0.385 0.383 0.388 0.385

TeV cut 2 0.339 0.335 0.340 0.336 0.342 0.335

Table 6: Scale dependence of the acceptances, Tevatron.

AW (cut 1) = 0.3848
+0.0020

−0.0039
(4.2)

AW (cut 2) = 0.3402
+0.0028

−0.0013
(4.3)

and for the LHC:

σ(NLO) = 20900
+318

−474
pb (4.4)

AW (cut 1) = 0.4770
+0.0048

−0.0049
(4.5)

AW (cut 2) = 0.1292
+0.0007

−0.0027
(4.6)

To compute the uncertainties shown in these equations, we considered the pulls with respect

to the results obtained with the n = 0 MRST2001E set. Although the n = 0 set is very

similar to the default set of MRST2001, the results obtained with the two are not identical

for the cross sections (with the n = 0 set, we get 2673 pb and 20815 pb at the Tevatron and

the LHC respectively) – they are identical for the acceptances; however, these differences

being less than 0.5%, we associated the uncertainties computed with the n = 0 set with

the cross section results relevant to the default set of MRST2001.

We remind the reader that the Hessian method [44], as it has been originally proposed,

returns symmetric uncertainties for a given observable. These uncertainties are therefore

independent of the central value for the observable considered, at variance with what

obtained in eqs. (4.1)–(4.6) with the prescription of ref. [43]. Following ref. [44] we would

have obtained

∆ (σ(NLO)) = 32 pb, ∆ (AW (cut 1)) = 0.0027, ∆ (AW (cut 2)) = 0.0018, (4.7)

at the Tevatron, and

∆ (σ(NLO)) = 386 pb, ∆ (AW (cut 1)) = 0.0047, ∆ (AW (cut 2)) = 0.0015, (4.8)

at the LHC. It is reassuring that these results are in overall agreement with those shown in

eqs. (4.1)–(4.6). We notice that both at the Tevatron and the LHC the relative uncertainty

on the acceptance is approximately half the size of the uncertainty on the total rate, and

at the per cent level. Since the impact of the PDFs on the acceptance is mostly due to the
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µ = µ0/2 µ = µ0 µ = 2µ0

NLO MC@NLO NLO MC@NLO NLO MC@NLO

LHC cut 1 0.475 0.485 0.477 0.485 0.478 0.484

LHC cut 2 0.130 0.134 0.129 0.133 0.125 0.132

Table 7: Scale dependence of the acceptances, LHC.

ηe cuts, which reflect the yW distributions, we expect that accurate measurements of the

ηe spectra will allow to reduce this uncertainty even further once the data will be available.

We finally point out that the theoretical picture underlying the treatment of PDF un-

certainties is far from being established. Although within the Hessian method one formally

arrives at the definition of the 1σ error band, in practice the combined effect of the failure of

some of the theoretical approximations involved, and of difficulties in the treatment of the

correlations between experimental errors, implies the necessity of dropping the rigorous 1σ

considerations. At this point, one is forced to introduce an arbitrariness in the procedure,

parametrized in terms of a single parameter (the tolerance) T , which is the maximum al-

lowed of the ∆χ2 variation w.r.t. the parameters of the best PDF fit. The MRST2001E [42]

and CTEQ6 [45] sets assume T =
√

50 and T = 10 respectively. On this basis alone, and

barring the other differences between the parametrizations of refs. [42] and [45], with the

latter choice for T the uncertainties of eqs. (4.1)–(4.8) would have been a factor of
√

2

larger. Furthermore, it has been argued that the Lagrange multiplier method [46] may

be better suited if one is interested in specific observables, such as the ones considered in

this paper. In ref. [42] the PDF uncertainty affecting the W cross section at the LHC,

computed according to the Lagrange multiplier method, has been found to be marginally

larger than that computed with the Hessian method. We conclude that, although the re-

sults of eqs. (4.1)–(4.6) are based on some assumptions that will need further theoretical

considerations, they can be considered as reliable estimates, perhaps up to a factor of 1.5,

of the PDF uncertainties.

In tables 6 and 7 we finally present the results for the scale dependence of the accep-

tances at the Tevatron and the LHC. We identify the factorization and renormalization

scales, and set them equal to rµµ0, with rµ = 1/2, 1 and 2. The uncertainty at NLO is of

the order of 1–2%, depending on the cuts (the largest variation being obtained for cut 2 at

the LHC). It is reduced to below 1% with MC@NLO. Although an independent variation

of µR and µF would lead to larger uncertainties, these results suggest a good stability w.r.t.

to the addition of NNLO corrections (as shown explicitly in ref. [21] for the case of fully

inclusive yW distributions), and point towards an improved scale dependence of the full

NLO+shower result. This behaviour is typical of most of the matched computations, which

combine the matrix elements computed to a given order in perturbation theory with the

resummation of large logarithmic terms.
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5. Conclusions

We summarize here the main conclusions of our study.

• In the case of lepton pT thresholds at 20 GeV, the addition of the shower corrections

to the parton-level LO calculation has a large effect on the acceptances. On the

contrary, the addition of the shower changes the NLO parton-level result by only 1%,

both at the Tevatron and at the LHC and over the full rapidity range |ηe| < 2.5. At

the LO, the effect of shower corrections increases with the lepton pT threshold; at

the NLO, it first increases (it is about 3% for the 40 GeV threshold at the LHC, and

it is larger than 10% around 50 GeV), and then decreases again when the threshold

moves towards mW .

• A major role in the overall acceptance is played by spin correlations. Only their

inclusion can guarantee a solid estimate of the acceptance. No clear pattern of evo-

lution of the spin correlations emerges when going from LO to NLO, indicating that

no obvious guess can be made on the impact of spin correlations at the NNLO level.

As a result, only when spin correlations will be included in the NNLO calculation

it will be possible to use this improved result for solid acceptance predictions at the

parton level.

• The scale dependence of the acceptance is at a level of 1% or less, suggesting that

the NLO approximation is stable relative to the addition of NNLO corrections. This

is consistent with the observation of ref. [21] that the shape of the fully inclusive

rapidity distribution of the W boson is not altered by NNLO effects. Since the yW

distribution is one of the main elements determining the rapidity acceptance for the

final-state charged lepton, it is therefore reasonable to assume that this conclusion

survives the presence of analysis cuts.

• Current PDF uncertainties affect the calculation of the acceptance at the level of 1%.

We conclude that the tools currently available (parton-level NLO plus the parton shower,

à la MC@NLO) should be sufficient to guarantee an overall theoretical uncertainty on W

acceptances due to QCD effects at the level of 2%, with possible improvements coming

from an in-situ monitoring of the rapidity distributions, which should reduce the PDF

uncertainties. In addition to the QCD effects, the known EW corrections both to the

short-distance matrix elements and to the definition of the lepton energy and isolation will

need to be included in any solid experimental estimate of the total W cross section. This

overall accuracy well matches the best theoretical estimates of the total W cross section,

based on NNLO QCD and NLO EW calculations. This opens the way for tests of QCD in

hadronic collisions at the per cent level, and for high-precision luminosity monitors based

on large-rate and high-pT observables.
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